

Count on it.

Form No. 3439-480 Rev A

Service Manual

60v Battery Service Manual

Published: January 2021

Revision History

Preface

This service manual was written expressly for Toro service technicians. The Toro Company has made every effort to make the information in this manual complete and correct.

Basic shop safety knowledge and mechanical/electrical skills are assumed. The Table of Contents lists the systems and the related topics covered in this manual.

We are hopeful that you will find this manual a valuable addition to your service shop. If you have any questions or comments regarding this manual, please contact us at the following address:

The Toro Company RLC/SWS Customer Care Department

8111 Lyndale Avenue South

Bloomington, MN 55420

The Toro Company reserves the right to change product specifications or make changes to this manual without notice.

Service Procedure Icons

The following icons appear throughout this Service Manual to bring attention to specific important details of a service procedure.

Critical Process

This icon is used to highlight:

- Installing safety equipment (shields, guards, seat belts, brakes, and R.O.P.S. components) that may have been removed
- Dimensions or settings that must be maintained for proper machine operation
- A specific fastener tightening sequence
- Component orientation that may not be obvious

Critical Torque

This icon is used to highlight an assembly torque requirement that is different than what is recommended in the Standard Torque Tables.

Fluid Specifications

This icon is used to highlight fluid specifications and capacities that are less common, and may not appear on the machine service decal or in the machine *Operator's Manual.*

Note: Refer to the service decal on the machine and the machine *Operator's Manual* for commonly used fluid specifications and capacities.

Preface	3
Chapter 1: Safety	1–1
Safety Instructions	1–2
Chapter 2: Specifications and Maintenance	2–1
Specifications	2–2
Torque Specifications	2–3
Chapter 3: Troubleshooting	3–1
General Troubleshooting	3–3
Battery Operated Products Troubleshooting Guide	3–4
Chapter 4: Theory of Operation	4–1
General Information	4–2
Service and Repairs	4–3
Chapter 5: Use Expectations	5–1
General Information	5–2
Service and Repairs	5–3
Chapter 6: Testing	6–1
General Information	6–2
Service and Repairs	6–3

Chapter 1

Safety

Safety Instructions .	 2
Think Safety First	 -

Safety Instructions

A

DANGER

This safety symbol means danger. When you see this symbol, carefully read the instructions that follow. Failure to obey the instructions could cause serious permanent injury, disability, or death.

WARNING

This safety symbol means warning. When you see this symbol, carefully read the instructions that follow. Failure to obey the instructions can result in serious injury.

A

A

CAUTION

This safety symbol means caution. When you see this symbol, carefully read the instructions that follow. Failure to obey the instructions can result in minor to moderate injury and/or damage to property or equipment.

Think Safety First

Avoid unexpected starting of engine...

Always turn off the engine, remove the ignition key and disconnect the spark plug wire(s) before cleaning, adjusting, or repair.

Avoid lacerations and amputations...

Stay clear of all moving parts whenever the engine is running. Treat all normally moving parts as if they were moving whenever the engine is running or has the potential to start.

Avoid burns...

Do not touch the engine, muffler, or other components, which may be hot during operation, while the unit is running or shortly after it has been running.

Avoid fires and explosions...

Use extreme care in handling fuel. It is flammable and its vapors are explosive. Extinguish all cigarettes, cigars, pipes, and other sources of ignition. Avoid spilling fuel and never smoke while working with any type of fuel or lubricant. Wipe up any spilled fuel or oil immediately. Never remove the fuel cap or add fuel when the engine is running. Always use approved, labeled containers for storing or transporting fuel and lubricants. Do not add or drain fuel in an enclosed space. Do not store the machine or fuel container where there is an open flame, spark, or pilot light, such as on a water heater or other appliance.

Avoid asphyxiation...

Do not operate an engine in a confined area without proper ventilation.

Avoid injury from batteries...

A

A

A

Think Safety First (continued)

Battery acid is poisonous and can cause burns. Avoid contact with skin, eyes and clothing. Battery gases can explode. Keep cigarettes, sparks and flames away from the battery.

Avoid injury from lithium-ion batteries...

If any smoke is observed, call the local emergency services immediately.

Always service lithium-ion batteries with the machine parked near a service door large enough to move the product or battery outside in case of an emergency and keep a fire blanket nearby. Always disconnect the batteries when servicing products with lithium-ion batteries. Do not use a fire extinguisher on the batteries. Keep a plastic bucket full of clean water nearby that can completely submerge the handheld battery and not tip over. Immediately submerge handheld batteries if smoke appears.

Use only Toro-specified lithium-ion battery packs designed for your machine. Do not mix batteries of any brand or type in Toro products. Use only the Toro-specified lithium-ion charger designed to charge your machine. Do not attempt to use any other battery charger. Do not heat, puncture, over-charge or over-discharge the batteries.

Immediately discontinue use of the battery if, while using, charging, or storing the battery, it emits an unusual smell, feels hot, changes color or shape, or appears abnormal in any other way. If this happens, move the product or battery to a safe outdoor area away from any building, vehicle, or combustible material. Observe the battery for at least 1 hour to ensure that any reaction has stopped. If the reaction continues, or if any smoke is observed, call your local emergency services immediately.

Avoid injury due to inferior parts...

Use only original equipment parts to ensure that important safety criteria are met.

Avoid injury to bystanders...

Always clear the area of bystanders before starting or testing powered equipment.

Avoid injury due to projectiles...

Always clear the area of sticks, rocks or any other debris that could be picked up and thrown by the powered equipment.

Avoid modifications...

Never alter or modify any part unless it is a factory approved procedure.

Avoid unsafe operation...

Always test the safety interlock system after making adjustments or repairs on the machine. Refer to the Electrical section in this manual for more information.

Avoid electrical shock...

Never touch electrical wires or components while the engine is running. They can be sources of shock. De-energize the system if you are having to do repairs. If testing electrical components ensure you are working in a dry environment.

Hydraulic System...

Release all pressure in the hydraulic system before performing any work on the system. Keep your body and hands away from pin-hole leaks or nozzles that eject hydraulic fluid under high pressure. Do not use your hands to search for leaks. Hydraulic fluid escaping under pressure can have sufficient force to

Think Safety First (continued)

penetrate the skin and cause serious injury. Seek medical attention right away if hydraulic fluid gets in the skin.

Personal Protective Equipment...

Tie back long hair, and do not wear loose clothing or jewelry. Use appropriate personal protective equipment (PPE) for protecting yourself from potential hazards in the environment in which you will work. Each process outlined in this manual may need different PPE to protect the service person. Use the proper PPE for the task at hand.

Tools...

All tools should be in proper working order. Do not use tools that are broken or in disrepair. Use the proper tool for the proper application.

Lifts, Hoists, and Jacks...

All lifts, hoists, and jacks should be used in accordance with the manufacturer information. Inspect lifts, hoists, and jacks prior to use. Do not overload lifts, hoists, and jacks. Do not work under a suspended load. Ensure chock blocks are used on equipment that can move. Use lifts or jacks and jack stands that are rated to support the total weight of the machine and any attachments. Do not rely on jacks to support the machine. If you are unsure of the operation of any lifts, hoists, and jacks do not use.

Fire Extinguishers...

The proper class of fire extinguisher should be used in case of fire.

Class A extinguishers are for ordinary combustible materials such as paper, wood, cardboard, and most plastics. The numerical rating on these types of extinguishers indicates the amount of water it holds and the amount of fire it can extinguish. Geometric symbol (green triangle).

Class B fires involve flammable or combustible liquids such as gasoline, kerosene, grease and oil. The numerical rating for class B extinguishers indicates the approximate number of square feet of fire it can extinguish. Geometric symbol (red square).

Class C fires involve electrical equipment, such as appliances, wiring, circuit breakers and outlets. Never use water to extinguish class C fires - the risk of electrical shock is far too great! Class C extinguishers do not have a numerical rating. The C classification means the extinguishing agent is non-conductive. Geometric symbol (blue circle).

ABC fire extinguishers are a dry chemical type used for multiple purposes. See above information for description.

Ensure fire extinguishers are serviceable and replace any that are discharged or out of inspection dates.

Chapter 2

Specifications and Maintenance

Specifications	2–2
Torque Specifications	
Equivalents and Conversions.	
U.S. to Metric Conversions	

Specifications

Model	88620	88625	88640	88660	88675
Battery	2.0 Ah Battery	2.5 Ah Battery	4.0 Ah Battery	6.0 Ah Battery	7.5 Ah Battery
Battery Size (W x H x L)	15.11 x 20.32 x 10.41 cm (5.95 x 8.0 x 4.1 inches)				
Weight	1.65 kg	(3.65 lb)	2.33 kg (5.15 lb)	2.94 kg (6.5 lb)	3.15 kg (6.95 lb)

Torque Specifications

The recommended fastener torque values are listed in the following tables. For critical applications, as determined by Toro, either the recommended torque or a torque that is unique to the application is clearly identified and specified in the service manual.

These torque specifications for the installation and tightening of fasteners shall apply for all fasteners which do not have a specific requirement identified in the service manual. The following factors shall be considered when applying torque: cleanliness of the fastener, use of a thread sealant (Loctite), degree of lubrication on the fastener, presence of a prevailing torque feature, hardness of the surface underneath of the fastener's head, or similar condition which affects the installation.

As noted in the following tables, torque values should be reduced by 25% for lubricated fasteners to achieve the similar stress as a dry fastener. Torque values may also have to be reduced when the fastener is threaded into aluminum or brass. The specific torque value should be determined based on the aluminum or brass material strength, fastener size, length of thread engagement, etc.

The standard method of verifying torque shall be performed by marking a line on the fastener (head or nut) and mating part, then back off fastener 1/4 of a turn. Measure the torque required to tighten the fastener until the lines match up.

Fastener Identification

Inch Series Bolts and Screws

Metric Bolts and Screws

Thread Size	Grade 1, 5, & 8 Fasteners with Thin Height Nuts	SAE Grade 1 Bolts, Screws, Studes & Sems with Regular Height Nuts (SAE Grade 2 or Better Nut)		SAE Grade 5 Bolts, Screws, Studs & Sems with Regular Height Nuts (SAE Grade 5 or Better Nut)		iolts, Screws, with Regular (SAE Grade ter Nut) SAE Grade Height Nuts (SAE Grade 8 or Better Nut)	
	in-lb	in-lb	N • cm	in-lb	N • cm	in-lb	N • cm
#6-32 UNC	10 + 2	12 + 2	147 ± 02	15 ± 2	169 ± 23	23 ± 3	260 ± 34
#6-40 UNF	10 ± 2	13 ± 2	147 ± 23	17 ± 2	192 ± 23	25 ± 3	282 ± 34
#8-32 UNC	12 + 2	25 + 5	282 + 30	29 ± 3	328 ± 34	41 ± 5	463 ± 56
#8-36 UNF	13 ± 2	20 ± 0	202 ± 30	31 ± 4	350 ± 45	43 ± 5	486 ± 56
#10-24 UNC	19 + 2	20 + 5	220 + 56	42 ± 5	475 ± 56	60 ± 6	678 ± 68
#10-32 UNF	10 ± 2	30 ± 5	339 ± 30	48 ± 5	542 ± 56	68 ± 7	768 ± 79
1/4-20 UNC	48 ± 7	53 ± 7	599 ± 79	100 ± 10	1130 ± 113	140 ± 15	1582 ± 169
1/4-28 UNF	53 ± 7	65 ± 10	734 ± 113	115 ± 12	1299 ± 136	160 ± 17	1808 ± 192
5/16-18 UNC	115 ± 15	105 ± 15	1186 ± 169	200 ± 25	2260 ± 282	300 ± 30	3390 ± 339
5/16-24 UNF	138 ± 17	128 ± 17	1446 ± 192	225 ± 25	2542 ± 282	325 ± 33	3672 ± 373
	ft-lb	ft-lb	N • m	ft-lb	N • m	ft-lb	N∙m
3/8-16 UNC	16 ± 2	16 ± 2	22 ± 3	30 ± 3	41 ± 4	43 ± 5	58 ± 7
3/8-24 UNF	17 ± 2	18 ± 2	24 ± 3	35 ± 4	47 ± 5	50 ± 6	68 ± 8
7/16-14 UNC	27 ± 3	27 ± 3	37 ± 4	50 ± 5	68 ± 7	70 ± 7	95 ± 9
7/16-20 UNF	29 ± 3	29 ± 3	39 ± 4	55 ± 6	75 ± 8	77 ± 8	104 ± 11
1/2-13 UNC	30 ± 3	48 ± 7	65 ± 9	75 ± 8	102 ± 11	105 ± 11	142 ± 15
1/2-20 UNF	32 ± 4	53 ± 7	72 ± 9	85 ± 9	115 ± 12	120 ± 12	163 ± 16
5/8-11 UNC	65 ± 10	88 ± 12	119 ± 16	150 ± 15	203 ± 20	210 ± 21	285 ± 28
5/8-18 UNF	75 ± 10	95 ± 15	129 ± 20	170 ± 18	230 ± 24	240 ± 24	325 ± 33
3/4-10 UNC	93 ± 12	140 ± 20	190 ± 27	265 ± 27	359 ± 37	375 ± 38	508 ± 52
3/4-16 UNF	115 ± 15	165 ± 25	224 ± 34	300 ± 30	407 ± 41	420 ± 43	569 ± 58
7/8-9 UNC	140 ± 20	225 ± 25	305 ± 34	430 ± 45	583 ± 61	600 ± 60	813 ± 81
7/8-14 UNF	155 ± 25	260 ± 30	353 ± 41	475 ± 48	644 ± 65	667 ± 66	904 ± 89

Standard Torque for Dry, Zinc Plated, and Steel Fasteners (Inch Series)

Note: Reduce torque values listed in the table above by 25% for lubricated fasteners. Lubricated fasteners are defined as threads coated with a lubricant such as oil, graphite, or thread sealant such as Loctite.

Torque values my have to be reduced when installing fasteners into threaded aluminum or brass. The specific torque value should be determined based on the fastener size, the aluminum or base material strength, length of thread engagement, etc.

The nominal torque values listed above for Grade 5 and 8 fasteners are based on 75% of the minimum proof load specified in SAE J429. The tolerance is approximately \pm 10% of the nominal torque value. Thin nuts include jam nuts.

Standard Torque for Dry, Zinc Plated, and Steel Fasteners (Metric Series)

Thread Size	Class 8.8 Bolts, Screws, Studs with Regular Height Nuts (Class 8 or Stronger Nuts)		Class 10.9 Bolts, Screws, Studs with Regular Height Nuts (Class 10 or stronger Nuts)		
	in-lb	in-lb N • cm		N • cm	
M5 X 0.8	57 ± 6	644 ± 68	78 ± 8	881 ± 90	
M6 X 1.0	96 ± 10	1085 ± 113	133 ± 14	1503 ± 158	
	ft-lb	N • m	ft-lb	N • m	
M8 X 1.25	19 ± 2	26 ± 3	28 ± 3	38 ± 4	
M10 X 1.5	38 ± 4	52 ± 5	54 ± 6	73 ± 8	
M12 X 1.75	66 ± 7	90 ± 10	93 ± 10	126 ± 14	
M16 X 2.0	166 ± 17	255 ± 23	229 ± 23	310 ± 31	
M20 X 2.5	325 ± 33	440 ± 45	450 ± 46	610 ± 62	

Note: Reduce torque values listed in the table above by 25% for lubricated fasteners. Lubricated fasteners are defined as threads coated with a lubricant such as oil, graphite, or thread sealant such as Loctite.

Torque values may have to be reduced when installing fasteners into threaded aluminum or brass. The specific torque value should be determined based on the fastener size, the aluminum or base material strength, length of thread engagement, etc.

The nominal torque values listed above are based on 75% of the minimum proof load specified in SAE J1199. The tolerance is approximately \pm 10% of the nominal torque value. Thin height nuts include jam nuts.

SAE Grade 8 Steel Set Screws

Thread Size	Recommended Torque			
	Square Head Hex Socket			
1/4 - 20 UNC	140 ± 20 in-lb	73 ± 12 in-lb		
5/16 - 18 UNC	215 ± 35 in-lb	145 ± 20 in-lb		
1/2 - 13 UNC	75 ± 15 ft-lb	50 ± 10 ft-lb		
3/8 - 16 UNC	35 ± 10 ft-lb	18 ± 3 ft-lb		

Wheel Bolts and Lug Nuts

Thread Size	Recommended Torque**		
7/16 - 20 UNF Grade 5	65 ± 10 ft-lb	88 ± 14 N • m	
1/2 - 20 UNF Grade 5	80 ± 10 ft-lb	108 ± 14 N • m	
M12 X 1.25 Class 8.8	80 ± 10 ft-lb	108 ± 14 N •m	
M12 X 1.5 Class 8.8	80 ± 10 ft-lb	108 ± 14 N • m	

**For steel wheels and non-lubricated fasteners.

Thread Cutting Screws (Zinc Plated Steel)

Type 1, Type 23, or Type F			
Thread Size	Baseline Torque*		
No. 6 - 32 UNC	20 ± 5 in-lb		
No. 8 - 32 UNC	30 ± 5 in-lb		
No. 10 - 24 UNC	38 ± 7 in-lb		
1/4 - 20 UNC	85 ± 15 in-lb		
5/16 - 18 UNC	110 ± 20 in-lb		
3/8 - 16 UNC	200 ± 100 in-lb		

*Hole size, material strength, material thickness and finish must be considered when determining specific torque values. All torque values are based on non-lubricated fasteners.

Conversion Factors

in-lb X 11.2985 = N • cm ft-lb X 1.3558 = N • m N • cm X 0.08851 = in-lb N • cm X 0.73776 = ft-lb

Thread Cutting Screws (Zinc Plated Steel)

Threads Size	Threads	Pagalina Torqua*	
	Туре А	Туре В	Baseline Torque
No. 6	18	20	20 ± 5 in-lb
No. 8	15	18	30 ± 5 in-lb
No. 10	12	16	38 ± 7 in-lb
No. 12	11	14	85 ± 15 in-lb

*Hole size, material strength, material thickness and finish must be considered when determining specific torque values. All torque values are based on non-lubricated fasteners.

Equivalents and Conversions

Decimal and Millimeter Equivalents

Fractions	Decimals	mm	Fractions	Decimals	mm
1/64	0.015625	0.397	33/64	0.515625	13.097
1/32	0.03125	0.794	16/32	0.53125	13.484
3/64	0.046875	1.191	35/64	0.546875	13.891
1/16	0.0625	1.588	9/16	0.5625	14.288
5/64	0.078125	1.984	37/64	0.578125	14.684
3/32	0.9375	2.381	19/32	0.59375	15.081
1/8	0.1250	3.175	5/8	0.6250	15.875
9/64	0.140625	3.572	41/64	0.640625	16.272
5/32	0.15625	3.969	21/32	0.65625	16.669
11/64	0.171875	4.366	43/64	0.671875	17.066
3/16	0.1875	4.762	11/64	0.6875	17.462
13/64	0.203125	5.159	45/64	0.703125	17.859
7/32	0.21875	5.556	23/32	0.71875	18.256
15/64	0.234375	5.953	47/64	0.734375	18.653
1/4	0.2500	6.350	3/4	0.7500	19.050
17/64	0.265625	6.747	49/64	0.765625	19.447
9/32	0.28125	7.144	25/32	0.78125	19.844
19/64	0.296875	7.541	51/64	0.796875	20.241
5/16	0.3125	7.541	13/16	0.8125	20.638
21/64	0.328125	8.334	53/64	0.828125	21.034
11/32	0.34375	8.731	27/32	0.84375	21.431
23/64	0.359375	9.128	55/64	0.859375	21.828
3/8	0.3750	9.525	7/8	0.8750	22.225
25/64	0.390625	9.922	57/64	0.890625	22.622
13/32	0.40625	10.319	29/32	0.90625	23.019
27/64	0.421875	10.716	59/64	0.921875	23.416
7/16	0.4375	11.112	15/16	0.9375	23.812
29/64	0.453125	11.509	61/64	0.953125	24.209
15/32	0.46875	11.906	31/32	0.96875	24.606
31/64	0.484375	12.303	63/64	0.984375	25.003
1/2	0.5000	12.700	1	1.000	25.400
	1 mm = 0.03937 in.		0.001 in. = 0.0254 mm		

U.S. to Metric Conversions

	To Convert	Into	Multiply By
	Miles	Kilometers	1.609
	Yards	Meters	0.9144
	Feet	Meters	0.3048
Linear Measurement	Feet	Centimeters	30.48
	Inches	Meters	0.0254
	Inches	Centimeters	2.54
	Inches	Millimeters	25.4
	Square Miles	Square Kilometers	2.59
Area	Square Feet	Square Meters	0.0929
Aled	Square Inches	Square Centimeters	6.452
	Acre	Hectare	0.4047
	Cubic Yards	Cubic Meters	0.7646
Volume	Cubic Feet	Cubic Meters	0.02832
	Cubic Inches	Cubic Centimeters	16.39
	Tons (Short)	Metric Tons	0.9078
Weight	Pounds Kilograms		0.4536
	Ounces	Grams	28.3495
Pressure	Pounds/Square Inch	Kilopascal	6.895
	Foot-Pounds	Newton-Meters	1.356
Work	Foot-Pounds	Kilogram-Meters	0.1383
	Inch-Pounds	Kilogram-Centimeters	1.152144
Liquid Volume	Quarts	Liters	0.9463
	Gallons	Liters	3.785
Liquid Flows	Gallons/Minute	Liters/Minute	3.785
Tomporaturo	Fabranhait	Colsius	1. Subtract by 32°
	Famelineit	Ceisius	2. Multiply by 5/9

Troubleshooting

General Troubleshooting		
Battery Operated Products	Troubleshooting Guide	3–4

GEARS

The Systematic approach to defining, diagnosing and solving problems.

General Troubleshooting

Problem	Possible Cause	Corrective Action
The tool will not operate	The charger is not charging the battery.	 Is the charger physically damaged? If yes, replace the charger.
		 Check if LEDs light up on the battery. If the LEDs do not light up when the battery State-of-Charge (SOC) button is pressed, replace the battery.
		 When the battery is docked, the battery State-of-Charge (SOC) LEDs should cycle (if the SOC button is pushed immediately before docking the battery), the LEDs will not cycle when the battery is docked.
		 Wait approximately 30 seconds between pressing the SOC button on the battery and docking the battery to test.
		 If the battery LEDs do not cycle when placed on the charger, but do cycle when the SOC button is pressed, the charger will need to be replaced.
		 If none of the above steps resolved the issue or no lights are visible on the charger, replace the charger.
	The battery is not taking a charge.	 Is the battery physically damaged? If yes, replace the battery.
		2. Install the battery on the charger. If the charger light blinks green, the battery is charging. If no lights blink on the charger, replace the charger.
		 If the LEDs on the battery do not turn on when the State-of-Charge (SOC) button is pressed on the battery, replace the battery.
	The tool is not functioning.	 Depending on the tool, repair or replace as parts availability or service manual advises.
		2. Verify safety switch functionality.
		3. Check to make sure the battery is charged. If it's not charged, follow the battery and charger testing procedure. If the battery is charged and tool is not functioning, replace/repair the tool.

Battery Operated Products Troubleshooting Guide

Theory of Operation

General Information	
Service and Repairs	
Battery Architecture	
Battery Architecture	4–5
BMS (Battery Management System)	4–5
Battery Configuration	4–6
	•

General Information

Service and Repairs

Battery and Charger Assembly 1

1. 60v Charger

See Operator's Manual for additional information.

Battery Architecture

Inside the battery pack are the cell/power pack and BMS (Battery Management System) combined to ensure the battery in the tool works the way it's supposed to.

Cell/Power Pack

The first component of the battery pack is the cell pack. Cell packs come in a variety of formats, different shapes and sizes, for different applications. Many factors impact what type of battery format is used in any particular product as each format has advantages and disadvantages. Toro designs the batteries within the context of how the battery will be used in the products and consider everything from manufacturing costs to heat dissipation and efficient use of space to weight concerns.

Some of the advantages of using cylindrical cell packs is that they have good mechanical stability. Cylindrical cell packs typically have longer calendar life and cycling ability and higher energy density.

Battery Architecture

While the battery is discharging and providing an electrical current, the anode (-) releases lithium-ions to the cathode (+), generating a flow of electrons from one side to the other. When plugging in the device, the lithium-ions are released by the cathode (-) and received by the anode (+).

Battery Makeup

A battery is made up of an anode, cathode, separator, electrolyte and 2 current collectors (positive and negative).

- The anode and cathode store the lithium.
- The anode releases the lithium-ions when the battery is discharging. The cathode releases lithium-ions when the battery is charging.
- The electrolyte carries positively charged lithium-ions from the anode to the cathode and vice versa through the separator.
- The movement of the lithium-ions creates free electrons in the anode which creates a charge at the positive current collector.
- The electrical current then flows from the positive current collector through a device being powered to the negative current collector.
- The separator blocks the flow of electrons inside the battery.

BMS (Battery Management System)

The second component of the battery pack is the BMS. The BMS serves as the controller of the battery pack and communicates with the control of the tool to ensure the tool and battery are working optimally.

Features Managed by BMS

Features managed by the BMS include the state-of-charge indicator lights, monitoring of voltage and temperature, and communication between the battery, the charger, and the tool. The BMS determines if the conditions are right to charge or discharge and it authenticates the correct battery for the tool.

Features Managed by Product

Features managed by the product include tool operations and power usage control. The BMS does not tell the tool what to do and it does not dictate how much power is being used, the tool does.

Battery Configuration

When thinking about battery configuration, the 3 key terms are: voltage, amp hours, and watt hours. Individual cylindrical cells are configured in parallel and series to form a battery pack.

Amp Hours and Voltage

Voltage in volts (V), is a measure of electrical potential. To build voltage in a cell pack, individual battery cells must be connected in a series. For example, the voltage of each battery is 3.7 volts with 3 batteries in the series. The total voltage is 3.7 volts (per battery) times 3 batteries, which equals 11.1 V.

Amperage, in amps (A), is a measure of instantaneous electrical current. Batteries are often rated in amp hours (Ah). For example, 2.5 amp hour battery can discharge 2.5 amps continuously for 1 hour. The amp hour rating is the size (or capacity) of the products energy source- a 2.5 Ah battery will do half of the work of a 5 Ah battery in the same voltage family. In order to build capacity, more strings of cells must be added in parallel. The amp hours of each individual battery is 2.5 and there are 4 batteries in parallel resulting in a total of 10 Ah.

Battery Configuration: Watt Hours

Watt hours is the measurement of work done by the tool. The electrical energy, in watt hours (Wh), is a measurement of power over time that can be converted into physical work. Both watt hours of the battery and the tool's watt hour capacity are important information to know.

Determining Watt Hours

Watt hours is determined by multiplying amp hours by volts. Using an individual battery cell that has 3.7 volts and 2.5 amp hours, means 3.7 volts in a series of 3 which results in a total voltage of 11.1 volts.

This indicates 4 cells in parallel, each cell equaling 2.5 amp hours resulting in 10 total amp hours for this configuration. To determine watt hours, take the total voltage of 11.1 and multiply by the total amp hours of 10, resulting 111 watt hours for this battery configuration example.

Chapter 5

Use Expectations

General Information	
Service and Repairs	
60 Volt Run Time	

General Information

Service and Repairs

60 Volt Run Time

ТооІ	2.5 Ah Battery	4.0 Ah Battery	6.0 Ah Battery	7.5 Ah Battery
String Trimmer	30-50 minutes	60% more	140% more	200% more
Hedge Trimmer	75 minutes	60% more	140% more	200% more
Blower	90 minutes (Low Setting)	60% more	140% more	200% more
WPM	60% less	33% less	1/3 acre	25% more
Single Stage Snow	77% less	50% less	20% less	12 car driveway
Chainsaw	60 cuts (6 x 6 inch timber)	40–60% more	140% more	200% more

Note: Table based on conditions and age of battery, times are approximate.

Chapter 6

Testing

General Information .	
Service and Repairs	

General Information

Service and Repairs

Battery and Charger

At 60 VDC the charger will indicate a full battery. If left on the charger, the battery will continue to charge for a period of time bringing the battery voltage up to 62 VDC. A battery with a reading of under 40 VDC has been over discharged and will likely not recover requiring replacement.

The 60v batteries have 4 terminals. To test the battery voltage, place a multimeter on the DC voltage auto range. Then place a negative (black) probe on the terminal with the minus sign above it. Place a positive (red) probe on the terminal with the plus sign above it. Read the voltage from the multimeter. Battery voltage should rise when placed on the charger if battery is within the acceptable temp range.

Charge Times

Charger	88610 60 Volt 1.0 Ah Charger Slow Charger (longer time to charge a battery)	88602 60 Volt 2.0 Ah Charger Medium Charger	88605 60 Volt 5.5 Ah Charger Fast Charger
2.0/2.5 Ah battery	2.3 hours	1.1 hours	0.6 hours
4.0 Ah battery	3.6 hours	1.75 hours	0.7 hours
6.0 Ah battery	5.5 hours	2.75 hours	1 hour
7.5 Ah battery	7 hours	3.5 hours	1.3 hours